Milky Way Galaxy

New Evidence For A Jet From Milky Way’s Black Hole

SgrA*
New evidence has been uncovered for the presence of a jet of high-energy particles blasting out of the Milky Way's supermassive black hole. As outlined in the press release, astronomers have made the best case yet that such a jet exists by combining X-ray data from NASA's Chandra X-ray Observatory with radio emission from the NSF's Very Large Array (VLA).

A Glimpse of the Violent Past of Milky Way's Giant Black Hole

Sagittarius A*

Researchers using NASA's Chandra X-ray Observatory have found evidence that the normally dim region very close to the supermassive black hole at the center of the Milky Way Galaxy flared up with at least two luminous outbursts in the past few hundred years.

This discovery comes from a new study of rapid variations in the X-ray emission from gas clouds surrounding the supermassive black hole, a.k.a. Sagittarius A*, or Sgr A* for short. The scientists show that the most probable interpretation of these variations is that they are caused by light echoes.

Too Hot to Swallow

Wang

We are delighted to welcome Q. Daniel Wang as a guest blogger today. Daniel is the first author of a paper dissecting the X-ray-emitting gas around the center of our Galaxy, the subject of our latest press release. He is a professor in astronomy at University of Massachusetts Amherst. He was the Principal Investigator of the first large-scale Chandra and Hubble surveys of the Galactic center to explore various components of this exotic ecosystem. He recently enjoyed a four-month stay at University of Cambridge as a Beverley Sackler Distinguished Visiting astronomer, where much of the work reported in the paper was finished.

It has been known for a while that almost all massive galaxies contain a giant black hole at their centers. Most of such black holes, including the one at the center of our own Galaxy, are, however, far dimmer than quasars typically seen in the early universe. This dimness cannot simply be explained by decreasing amounts of material that the black holes could capture. Have the black holes lost their appetite? Or do they just swallow everything that is captured without much radiation? Many theories have been developed. But direct observational tests are hard to come by.

Taking Our Galactic Self-portrait

One of Chandra's most iconic images is that of the center of our Galaxy. We should say, more accurately, that this image is just a small piece of Milky Way's center. This image - which stretches some 900 light years in one direction and 400 light years in the other - is actually a montage of 30 separate Chandra images that have been stitched together to create this stunning X-ray tableau. Even with all of that data, this image still only represents a small fraction of the plane of the Milky Way, which stretches some 100,000 light years across (again, compared to just 900 light years in our image.) But even in that relatively small space, we see how amazing our Galaxy is. There's a supermassive black hole and hundreds of other objects, including neutron stars, smaller black holes, stars and more.
Galactic Center
But when do we get a full picture of the Milky Way? The answer is we don't. Since our Solar System is embedded within our Galaxy, we never get a real astronomical image of what it looks from the outside as produced by a telescope. (What we see when we are "looking" at a complete picture of the Milky Way is an artist's representation - or another spiral galaxy that is standing in as its stunt double.)

Resolving a Galactic Mystery

An extremely deep Chandra X-ray Observatory image of a region near the center of our Galaxy has resolved a long-standing mystery about an X-ray glow along the plane of the Galaxy. The glow in the region covered by the Chandra image was discovered to be caused by hundreds of point-like X- ray sources, implying that the glow along the plane of the Galaxy is due to millions of such sources.

Pages

Disclaimer: This service is provided as a free forum for registered users. Users' comments do not reflect the views of the Chandra X-ray Center and the Harvard-Smithsonian Center for Astrophysics.
Please note this is a moderated blog. No pornography, spam, profanity or discriminatory remarks are allowed. No personal attacks are allowed. Users should stay on topic to keep it relevant for the readers.
Read the privacy statement