Images by Date
Images by Category
Solar System
Stars
Exoplanets
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Galaxy Clusters
Cosmology/Deep Field
Miscellaneous
Images by Interest
Space Scoop for Kids
4K JPG
Multiwavelength
Sky Map
Constellations
Photo Blog
Top Rated Images
Image Handouts
Desktops
Fits Files
Visual descriptions
Image Tutorials
Photo Album Tutorial
False Color
Cosmic Distance
Look-Back Time
Scale & Distance
Angular Measurement
Images & Processing
AVM/Metadata
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
IGR J11014-6103 Animations
Click for low-resolution animation
Tour of IGR J11014-6103
Quicktime MPEG With closed-captions (at YouTube)

Astronomers have found a remarkable object in our Milky Way galaxy. This object is a pulsar, the spinning dense core that remains after a massive star has exploded and collapsed. When this pulsar was created, something interesting happened because this pulsar is racing away from the supernova remnant where it was born at a speed between 2.5 million and 5 million miles per hour. This supersonic pace makes this pulsar - called IGR J1104-6103 -- one of the fastest moving pulsars ever observed. And what's more is that this runaway pulsar is leaving behind an extraordinary tail behind it as it goes. This tail is about 37 light years in length, making it the longest X-ray jet ever seen from an object in the Milky Way galaxy. New data from NASA's Chandra X-ray Observatory have been combined with radio data from the Australia Telescope Compact Array to provide astronomers with a more complete picture of what's happening in this system. For example, these data show that the tail has a distinct corkscrew shape. This suggests that the pulsar is wobbling like a top as it spins. IGR J1104-6103 is located about 60 light years away from the center of the supernova remnant SNR MSH 11-61A, which is where astronomers think the pulsar was originally created. By examining the details of the pulsar, its jet, and the supernova remnant, astronomers are piecing together the story of this exceptional object in our Galaxy.
[Runtime: 01:54]

(Credit: NASA/CXC/A. Hobart)



Click for low-resolution animation
The Space Olympics
Quicktime MPEG With closed-captions (at YouTube)

Nothing in space stays still. In fact, most stars are like long-distance marathon runners, as they are constantly moving in space throughout their lifetimes. However, astronomers have recently spotted a star (shown in this new space photo as a green smudge in the box) that is better at sprint running.

To work out the speed of this star, astronomers had to figure out how far it has travelled since it started its race and how long this took. Astronomers think the star began its race at the center of the purple cloud of gas and dust in the photo. That's because this is a special type of star that rotates very quickly, which is called a pulsar. And the pulsar was ejected during the explosion that created the cloud of gas and dust.

Based on their estimates, the astronomers think the pulsar is moving at an incredible speed of between 5 million and 7 million miles per hour! This could make it the fastest moving pulsar ever known! But there is a competitor for the title, as another pulsar has previously been estimated to be moving between 3 and 6 million miles per hour.

It's a pity astronomers can't enter these two stars into a 'Space Olympics' to determine which one is the fastest sprinter. Instead, they need to work it out the hard way and fine-tune their results.
[Runtime: 01:48]

(Credit: NASA/CXC/April Jubett)


Return to IGR J11014-6103 (February 18, 2014)